Introduction: Sunrise Alarm

Have you ever been late to work? How many times have you not been able to see the sunrise because you just couldn't wake up at the right time? The SunriseAlarm senses the light coming through your window and plays the Mario Theme, waking you up! You'll never lose track of time again!

Step 1: What Will You Need to Make a Sunrise Alarm?

First of all, you'll need to gather some materials!

- an Arduino board

- a computer

- one jumper wire

- a 100w resistor

- a buzzer

- a light sensor

- a battery

- a printed circuit board

- a barrel conector

Step 2: Crafting the Alarm

First, you should connect your printed circuit board to your Arduino board. Then, solder the buzzer, the jumper wire, the resistor and the light sensor to the printed circuit board. Follow the image to know the correct positions.

We had a few difficulties on this step. First, check if you have soldered everything correctly. Once you are done, it is really hard going back.

Step 3: THE CODE

<pre><pre>#define NOTE_B0  31<br>#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52  
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978
#define melodyPin 3
//Mario main theme melody
int melody[] = {
  NOTE_E7, NOTE_E7, 0, NOTE_E7, 
  0, NOTE_C7, NOTE_E7, 0,
  NOTE_G7, 0, 0,  0,
  NOTE_G6, 0, 0, 0, 
  NOTE_C7, 0, 0, NOTE_G6, 
  0, 0, NOTE_E6, 0, 
  0, NOTE_A6, 0, NOTE_B6, 
  0, NOTE_AS6, NOTE_A6, 0, 
  NOTE_G6, NOTE_E7, NOTE_G7, 
  NOTE_A7, 0, NOTE_F7, NOTE_G7, 
  0, NOTE_E7, 0,NOTE_C7, 
  NOTE_D7, NOTE_B6, 0, 0,
  NOTE_C7, 0, 0, NOTE_G6, 
  0, 0, NOTE_E6, 0, 
  0, NOTE_A6, 0, NOTE_B6, 
  0, NOTE_AS6, NOTE_A6, 0, 
  NOTE_G6, NOTE_E7, NOTE_G7, 
  NOTE_A7, 0, NOTE_F7, NOTE_G7, 
  0, NOTE_E7, 0,NOTE_C7, 
  NOTE_D7, NOTE_B6, 0, 0
};
//Mario main them tempo
int tempo[] = {
  12, 12, 12, 12, 
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12, 
  12, 12, 12, 12,
  12, 12, 12, 12, 
  12, 12, 12, 12, 
  12, 12, 12, 12, 
  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
};
int LDR = 0;     //analog pin to which LDR is connected, here we set it to 0 so it means A0
int LDRValue = 0;      //that’s a variable to store LDR values
int light_sensitivity = 330;    //This is the approx value of light surrounding your LDR
void sing() {
  // iterate over the notes of the melody:
    Serial.println(" 'Mario Theme'");
    int size = sizeof(melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {
 
      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / tempo[thisNote];
 
      buzz(melodyPin, melody[thisNote], noteDuration);
 
      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);
 
      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);
 
    }
  }
  void buzz(int targetPin, long frequency, long length) {
  digitalWrite(13,HIGH);
  long delayValue = 1 000000/frequency/2; // calculate the delay value between transitions
  //// 1 second's worth of microseconds, divided by the frequency, then split in half since
  //// there are two phases to each cycle
  long numCycles = frequency * length/ 1000; // calculate the number of cycles for proper timing
  //// multiply frequency, which is really cycles per second, by the number of seconds to 
  //// get the total number of cycles to produce
  for (long i=0; i < numCycles; i++){ // for the calculated length of time...
    digitalWrite(targetPin,HIGH); // write the buzzer pin high to push out the diaphram
    delayMicroseconds(delayValue); // wait for the calculated delay value
    digitalWrite(targetPin,LOW); // write the buzzer pin low to pull back the diaphram
    delayMicroseconds(delayValue); // wait again or the calculated delay value
  }
  digitalWrite(13,LOW);
}
void setup()
  {
    Serial.begin(9600);          //start the serial monitor with 9600 buad
    pinMode(3, OUTPUT);     //we mostly use 13 because there is already a built in yellow LED in arduino which shows output when 13 pin is enabled
  }
 
void loop()
  {
    LDRValue = analogRead(LDR);      //reads the ldr’s value through LDR 
    Serial.println(LDRValue);       //prints the LDR values to serial monitor
    delay(50);        //This is the speed by which LDR sends value to arduino
 
    if (LDRValue > light_sensitivity) 
      {
        //digitalWrite(3, HIGH);
        sing();
        
      }
    else
      {
        digitalWrite(13, LOW);
      }
  }<br>

Step 4: How to Customize the Code

- In the code, you can customize the song that is played by erasing the part shown below. Then, you can insert another song you like.

//Mario main theme melody

int melody[] = { NOTE_E7, NOTE_E7, 0, NOTE_E7, 0, NOTE_C7, NOTE_E7, 0, NOTE_G7, 0, 0, 0, NOTE_G6, 0, 0, 0, NOTE_C7, 0, 0, NOTE_G6, 0, 0, NOTE_E6, 0, 0, NOTE_A6, 0, NOTE_B6, 0, NOTE_AS6, NOTE_A6, 0, NOTE_G6, NOTE_E7, NOTE_G7, NOTE_A7, 0, NOTE_F7, NOTE_G7, 0, NOTE_E7, 0,NOTE_C7, NOTE_D7, NOTE_B6, 0, 0, NOTE_C7, 0, 0, NOTE_G6, 0, 0, NOTE_E6, 0, 0, NOTE_A6, 0, NOTE_B6, 0, NOTE_AS6, NOTE_A6, 0, NOTE_G6, NOTE_E7, NOTE_G7, NOTE_A7, 0, NOTE_F7, NOTE_G7, 0, NOTE_E7, 0,NOTE_C7, NOTE_D7, NOTE_B6, 0, 0 }; //Mario main them tempo int tempo[] = { 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 9, 9, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 9, 9, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, };

- If you want to change light sensitivity, you should just change the number found in this part of the code: int light_sensitivity = 330; (light sensitivity is the limit of light of the light sensor can perceive without playing the song).

Step 5: Lasercutting a Box for Your Alarm!

We used the http://www.makercase.com/ to build our box. The material we chose to make it was a yellow acrylic, because it is see-through and the sensor was able to sense the light from the inside of the box. Make sure you choose a color in which the sensor is able to sense the light from within the box.

In box width, you should select, 15cm. In height, 4cm and in depth, 12cm. That's the size we chose, but feel free to use the measurements you wish. In material thickness, select customize material thickness and choose 4mm. That number is just the standard, but you should always use a caliper to check. In "Edge Joints", select "finger".

After that, you should just glue everything with superglue. You can also use hot glue, but I would not recommend it because it gets pretty messy. Also, be careful not to use too much glue because it gives your box a dirty appearance.

Step 6: Last Steps...

Now, you can stop using the USB wire to connect the Arduino board to your computer, and just connect the battery.And... yay! You're good to go! :)